A Long View of GNSS Evolution

Tom Stansell
Stansell Consulting

ALLSATOPEN

June 22, 2006 Tom@Stansell.com

My Perspective and a Disclaimer

- Nearly 40 years leading the development mostly of commercial Satellite Navigation products
- Member of the WAAS Independent Review Board
- ◆ Significant contributions to modernization of civil and military GPS signals (L5, L2C, M Code, L1C)
- ◆ Participant in International Working Groups on GPS, Galileo, QZSS, and GLONASS

The following are personal observations and do not necessarily represent the views of others

27 Years with 3 GPS Signals

Signal/SV	IIR
L1 C/A	√
L1 P(Y)	√
L1 M	
L1C	
L2 P(Y)	√
L2C	
L2 M	
L5	

1978 to 2005

IIR-M Satellites Add Three More

Signal/SV	IIR	IIR-M
L1 C/A	√	√
L1 P(Y)	√	✓
L1 M		
L1C		
L2 P(Y)	√	√
L2C		
L2 M		1
L5		

1978 to 2005

2005

IIF Satellites Add L5

Signal/SV	IIR	IIR-M	IIF	
L1 C/A	√	√	√	
L1 P(Y)	√	✓	√	
L1 M		√	✓	
L1C				
L2 P(Y)	√	√	✓	
L2C				
L2 M				
L5				

1978 to 2005

2005

200?

GPS III Adds L1C

Signal/SV	IIR	IIR-M	IIF	III
L1 C/A	✓	✓	√	✓
L1 P(Y)	\	√	✓	✓
L1 M				
L1C				
L2 P(Y)	√	✓	√	✓
L2C			1	
L2 M			1	✓
L5				

1978 to 2005

2005

200?

201?

Modernized GPS Signal Spectra

Asking The Experts About L1C

- ◆ The U.S. did a remarkable thing in designing L1C
- ♦ We asked GPS experts what signal characteristics they preferred

Five Signal Options Were Offered

S50/25% Option Selected

L1C Presentations and Responses

33 L1C Presentations (Sequence By Country)

- 1. Japan
- 2. Russia
- 3. Germany
- 4. United Kingdom
- 5. United States
- 6. Canada
- 7. Switzerland
- 8. Australia
- 9. Taiwan

81 Responses by Country

Responses by Organization (1 of 3)

- 1. AIST
- 2. AIST
- 3. AJ_Systems
- 4. ASBC
- 5. Asia_Air
- 6. Calgary
- 7. Ceva
- 8. CMC Electronics
- 9. Colorado
- 10. COMPAS
- 11. COMPAS
- **12. ENRI**
- **13. ENRI**
- 14. Forest_Service

- 15. U.S. FRA
- 16. Freq_Electronics
- 17. Furuno
- 18. Garmin
- 19. Global Locate
- 20. GNSS_Technologies
- 21. GSI
- 22. HCX
- 23. Hitachi
- 24. Hitachi
- 25. Imperial_College
- 26. Japan_Coast_Guard
- 27. Japan_Defense
- 28. Japan_Surveyor

Responses by Organization (2 of 3)

- 29. JAXA
- 30. JAXA
- 31. JAXA
- 32. JAXA
- 33. JAXA
- 34. JAXA
- 35. JAXA
- 36. JNS
- 37. JRC
- 38. Leica Geosystems
- 39. Matsushita
- 40. Mitsubishi
- 41. NASA
- 42. NavCom Technology
- 43. Navitime

- 44. NavWard
- 45. NEC_Toshiba_Space
- 46. NGS
- 47. Nikon_Trimble
- 48. Nippon_GPS
- 49. Nokia
- 50. Novariant
- 51. NovAtel
- 52. NTT
- 53. Ohio_State
- 54. Ohio_University
- 55. Ohio_University
- 56. Pioneer

Responses by Organization (3 of 3)

- 57. Qualcomm
- 58. Rockwell_Collins
- 59. Rockwell_Collins
- 60. Roke
- 61. Russian_Academy
- 62. Seiko_Epson
- 63. SiRF
- 64. SkyTraq
- 65. Sokkia
- 66. Sony
- 67. Space_Device_Eng
- 68. Stanford
- 69. Stanford

- 70. Stanford
- 71. Stanford
- 72. Surrey
- 73. Topcon
- 74. Topcon
- 75. Trimble
- 76. Trimble
- 77. U. College London
- 78. U. FAF Munich
- 79. U. New Brunswick
- 80. U. New South Wales
- 81. U.S. Coast Guard

By Country

- 34 Japan
- 26 U.S.
- 7 Russia
- 5 U.K.
- 4 Canada
- 1 Australia
- 1 Finland
- 1 Germany
- 1 Switzerland
- 1 Taiwan

A Clear International Signal Choice

Stansell Consulting

Slide 15

L1C Signal Philosophy

- ◆ Provide benefit to <u>all</u> users & applications
- ◆ Main attribute: Robustness
 - Signal acquisition and tracking
 - Code and carrier measurements
- -157 dBW = 0.87 microwatt at 1 km distance
- Spreading code correlation performance
- Data demodulation, both speed and threshold
- ◆ GNSS measurements: the most vital service
 - Auxiliary services better provided by other means
 - → Long lasting orbit and clock parameters
 - → Differential corrections
 - → Integrity messages

New GPS and Galileo L1 Signals

- ◆ L1 is the most important GNSS frequency
 - Required for all multi-frequency applications
 - Lowest ionospheric error for single frequency users
 - Narrow bandwidth better for low cost consumer products
- ♦ Key GPS L1C and Galileo L1 OS differences
 - GPS L1C pilot is 1.8 dB stronger than Galileo pilot
 - Galileo transmits Galileo-only integrity messages
 - → Requires 125 bps data rate (4 dB less energy/bit than 50 bps)
 - GPS transmits 3 dB less message power than Galileo
 - GPS uses 2.2 dB better forward error correction (LDPC)
 - Net is a 3.2 dB GPS message robustness advantage
 - Galileo provides Galileo-only integrity messages
 - Which is better - or is different better?

Dispelling a Myth

- ◆ Some people continue to talk about GPS or Galileo
 - As if customers will choose <u>between</u> GPS and Galileo
- ◆ This is a myth
- ♦ Most future receivers will be GNSS receivers
- ◆ Users will not know or care about the signal source
- Users simply will benefit from the improved accuracy, integrity, and availability performance of a combined GNSS satellite constellation

Estimated Signal Availability (Not Official)

When Will Galileo Be Fully Operational?

Slow or Frantic Pace?

- Users and receiver manufacturers see the pace of new GNSS signal deployment as extremely slow and often delayed
- ◆ Those providing the signals often think the pace is frantic to resolve the performance, cost, contractual, and schedule issues
 - An example is the GPS III procurement
 - People are working hard to resolve the issues
 - But schedule predictions have not been fulfilled
- ◆ However, change is coming, and we must prepare

Galileo and GPS Frequencies

Transition Issues (1 of 2)

- ◆ The greatest contribution of Galileo or GLONASS to the current GPS service is <u>more satellites</u>, i.e., better <u>geometry</u>
 - Improves integrity, accuracy, and availability
 - The increased number of operational satellites is now causing more interest in GLONASS

Transition Issues (2 of 2)

- ◆ All things being equal, <u>common</u> GNSS frequencies will be the most widely used (give the best value)
 - Why build receivers for 1/2 or 1/3 of the satellites in view
 - → Each new frequency adds cost for more complex antenna, RF filters, frequency plan, spurious interference, extra shielding, signal isolation, and calibration of differential delays
 - Galileo has only two frequencies common with GPS
 - GLONASS provides no common frequencies
 - A successful Galileo means <u>less</u> interest in GLONASS
 - → After ~40 satellites, diminishing value for each additional one
 - Common frequency signals would make GLONASS equally as useful as GPS or Galileo
 - The marketplace makes these decisions

Product Timing Issues

- ◆ Between now and 2017, or later, only L1 will be fully available from both GPS and Galileo
 - This is one reason L1 will remain the primary single frequency signal
- ◆ For many years, L2 will be the primary second frequency for most dual-frequency applications
 - Survey, machine control, agricultural, and scientific receivers far outnumber commercial aviation receivers
 - Only after there are many L5 signals will it become the primary second frequency. When will this happen?
 - There likely will be a transition from L1/L2 to L1/L2/L5 and later a simplification to L1/L5 for best value

Consulting

Impact of Dual Frequency on SBAS

- ◆ It requires many SBAS monitor stations to provide adequate WAAS coverage for the continental U.S.
 - This is mainly because it is so difficult to characterize single frequency ionospheric error over a large area
 - At lower (magnetic) latitudes, the ionospheric error is increasingly difficult to characterize, severely restricting SBAS availability
 - Solar activity is expected to peak about 2011, before L5 and E5a are fully deployed, impacting SBAS availability
- ◆ But if dual frequency were widely available

Summary

- ♦ It seems to take a very long time, but people are working hard to provide new satellite signals
- ◆ The transition will be difficult for receiver companies and for their users
 - When will my current receiver be obsolete?
 - When should I invest in a new product generation?
 - How long will it retain its value?
- ◆ Communication from satellite providers to the public about the coming transitions is vital to success
- ◆ Users won't know the source of their signals